翻訳と辞書 |
Laver function : ウィキペディア英語版 | Laver function In set theory, a Laver function (or Laver diamond, named after its inventor, Richard Laver) is a function connected with supercompact cardinals. ==Definition== If κ is a supercompact cardinal, a Laver function is a function ''ƒ'':κ → ''V''κ such that for every set ''x'' and every cardinal λ ≥ |TC(''x'')| + κ there is a supercompact measure ''U'' on ()<κ such that if ''j'' ''U'' is the associated elementary embedding then ''j'' ''U''(''ƒ'')(κ) = ''x''. (Here ''V''κ denotes the κ-th level of the cumulative hierarchy, TC(''x'') is the transitive closure of ''x'')
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Laver function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|